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The problem of the existence and stability of periodic and almost periodic solutions of strongly non-linear 

impulsive systems is investigated. The Poincare method [l] is justified for the case of an isolated generating 

solution. A dynamical system consisting of a bead on a vibrating surface is considered as an example. 

The small parameter method for investigating systems with discontinuous solutions was previously 

applied [2,3] to the case when the periodic solution is non-isolated. 

A method is used below for reducing the investigation of a system of equations with impuisive actions on 

surfaces to equations with fixed moments of inpulsive action. 

1. BASIC DEFINITIONS 

LET G, BE a domain in R” with compact closure and let p. > 0 be a fixed real number. On the set 

C= I(x,t,i,~)lx~GG,,rER,i=O,+l ,..., -~0<~<~01 

we consider a system of differential equations with impulsive actions on surfaces, the system having 
the form 

dxm=fft,x) +Crg(r,xCt). f #f,(X) +Clrfjx,&) 

W=t&c) +grf (x, #I) =4(x) +c1 Wf(x,IIl (1.1) 
f f C(“*) (G) f-I C(‘**) (G,), g E C(‘~‘.r) (G) n C(‘,*,*) (G,) 

where Ax Ir+ = x(6+) = x(e), Zi, Wi and rj are twice continuously differentiable functions, and Ge is 
the union of some neighbourhoods of the surfaces t = ti (x). 

The process defined by (1.1) for fixed I_L operates as follows: the representational point 
Pt = [t; x(t)] leaves the point (to, x0) and moves along the curve t; x(t) defined by the solution 
x(t) = x(t, to, xg) of the equation 

dx/dr =f(r.x) + Pg(t,x,P) (1.2) 

The motion along this curve terminates at time t = 0, when the point P, arrives at one of the 
surfaces of discontinuity so that f& = ti[x(@i)] + ~~i(x(~~), p). 

At that moment the point P, performs a jump Ax = IJx(&)] + ~W(X(~j), 1~) and then proceeds to 
move along the curve t; x(t) described by a solution x(t) = x[t, O,, x(&+)1 of system (1.2) etc. Thus 
the solution of Eq. (1.1) is a function that is piecewise-continuous, continuous on the left, and has 
discontinuities of the first kind. The basic results of the theory of differential equations with 
impulsive actions are given in [4]. 

The difficulty of investigating system (1.1) lies in the fact that the points of discontinuity of 
different solutions do not, in general, coincide. Hence, in order to better describe the asymptotic 
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properties of the solutions and their dependence on the initial data and parameter-. we introduce the 

following definitions. 
Let x(t) be a solution of system (1.1) defined in an interval 11. (U can be a finite section of a line. 

the whole line, or a half-line.) 
We say that a solution y(r) of this system lies in an l -neighbourhood of the solution x(r) if: { I) thu 

measure of the symmetric difference of the domains of existence of these solutions is no greater than 
t; (2) points of discontinuity of the solution y(t) lie in e-neighbourhoods of points of discontinuity of 

x(f); (3) for all TV U lying inside E-neighbourhoods of points of discontinuity of xir ) the inequalit\ 

]jx(t) -y(t)]] d E is satisfied. 
The B-topology is the topology defined by ~-nejghbourho~~ds of piecewisc-continuous functioni. 
The solution x(t) is R-stable if U = (tE R j f2fgt 1. roE R, and for any e>O a real ii>0 exist:, such 

that any solution y(r) satisfying the condition ]lx(fo) - y(t,,)// < 6 belongs to the t-neighbourhocxi of 
x(t). [The point to should not be a point of discontinuity of the solutions x(t) or y(r).] 

A B-stable solution x(t) is called B-asymptotically stable if a 6>0 exists such that for any real 

E>O one can find a real number 8>t,, such that any solution y(t) satisfying the ineyualit> 

]ix(&) - y(fo) I/ < 6 belongs to the ~-n~jghb~~urh~~od of x(t) with U = ft~ R j 13 H ) 
Suppose x(r) = x(t, p,)). x(&) = x{) is a solution of system (1.1) and U is a bounded set. The 

solution y(c) = x(t, pLg + &) also satisfies the initial condition y(r,,) = x ,, . and (9, ( E, are rcspcctivcl> 

the points of discontinuity of x(t) and y(f). 
We say that a piecewise-continuous function u(t) is a B-derivative of the solution x{r ) with respect 

to the parameter p if for ail IE U lying outside the intervals (fl,, &] when H,s& or outside the 

intervals (&, tl,] when tr<fj, we have the relation y(l) = x~j)+u(f)~~+~~(i~~~~ and. f~lrtherrn,~rc” 

there exists a sequence of real numbers ri such that for each i we have 8; = #, .f r, -ip + o ( Ap 11. 
One can similarly define B-derivatives of a solution of system (1.1) with respect to initrai 

conditions [S]. 
A piecewise-continuous function q(t) defined and uniformly bounded 111 the st”t K with 

discontinuities of the first kind at points of the sequence 0,. Hi--+ +x as f---j Ix, uni~~~rn~~~ 

continuous in the collection of intervals (0,. tft_+, ), i = I), i 1, . . is called an ~~ln~~~~t-peri~)dic (a.1’. 1 
function if for any real E>O there exists a relatively dense set of almost-e periods T such that each 

function cp(l+ T) lies in an e-neighbourhood of cp( t). 
We consider the generating system for Eq. ( I. 1) 

dXJdt=f(t.X)s t+fi(X)v AXi,=,i(x>=Ii(X) < i i i 

We assume that a real number w>O and an integer p>O exist for which the eyualitiex 

f(t + WY x) = f(t, x)3 ti+p (x) = t,(x) + W, i,+p (x) = I;(x) are satisfied uniformly in the domain G, and 
Eq. (1.3) has a solution x = +(t) with period w and points of discontinuity I = 0,. O< N, cc’1 
. . . <8,,<w. 

Let r be some neighbourhood of the integral curve of the solution $(t f in the set I;, x K 

M=sup llf II, c=sup _t+ ’ 
r r !I iI 

and that 

mininf(ti(x) -t,{x+ a(x)) >0, MC< 1 I l.4t 
f 

min(innt,(x) -sup I{_ 1 (x)) =y>o 
Gx 

Below, f, x and I and their derivatives will be taken to be column-vectors, while derivatives of the 

functions ti are row-vectors. Products of vectors and matrices are the usual products of rectangular 
matrices. The values of the functions at the points [&, #((l,)] and [@,, $(it,+)] are written without 
indicating the values of the arguments, the second case being distinguished by a superscript plus 
sign. 
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It follows [4] from conditions (1.4) that for sufficiently small / ,u / there is no “beating” of the 
solutions of (1.2) against the discontinuity surface. 

The system of equations in variations about the solution x = 3/(t) has the form [5] 

afo. $0)) ati 
A(t) = 

ati 

3X 
l Pi=(f-f+),, (I- -----f}_ + 

ax 

. f)“) 

(1.6) 

where E is the unit (n X n) matrix. 
we fix i. Suppose x0(t) is a solution of system (1.2) with initial conditions x0(&) = x, t = & is the 

instant when this solution meets the surface t = ti(X) + pq(x, p), and ~1 (t) is the solution of the 
Cauchy problem x1 (&) = x0(&) + Zi[xo(&)] + pwi(xc(&), P) of system (1.2). Assuming the exist- 
ence of the solutions xc, and x1 we define the map 

,i(XP)=:IIf(u,xofu))+Ctg(u,xotu),ll)ldu+ 
@i 

ti 

tt; [f(Wl(4) +ccg(~~x,(u),Ir)ldu 

and construct a system of differential equations with impulsive actions at fixed instants of time, 
having the form 

0 
- = f(t.y) +$g(f.Y,li).t fd, 

dt 

Ayl ,=ei=J,C~e4 (1.7) 

One can verify that the following property is vahd [6] A: if x(t) and y(t) are solutions of Eqs (1.1) 
and (1.7) respectively, with identical initial conditions and a common domain of existence, and t = & 
are the points of discontinuity of x(t), then for each i we have the equality x(6,) = y(&) if &<& or 
else X(0,) = y(ei+) if si< 0,. 

Thus, if we write Jj(x, 0) = Q,(x), the solution e(t) of system (1.3) is also a solution of the 
equation 

dx/dt=f(r,x), tf&, Axl r=+=Qi(x) (1.8) 

Theorems 1 and 2 proved in this paper are generalizations of the corresponding assertions in [I]. 

2. PERIODIC SOLUTIONS 

We assume, in addition to the conditions of Sec. 1, that the equalities g(t + w, x, p) = g(t, x, p), 

wi+p = Wi and Ti+p = 7j hold uniformly in the domain G. 

Theorem 1. Suppose systems (1.1) and (1.3) satisfy the above conditions and the multipliers of 
Eq. (1.6) are not equal to unity. 

Then for sufficiently small 1~ 1 system (1.1) has a unique w-periodic solution which tends in the 
B-topology to the solution x = J/(t) of the generating equation (1.3) as p-+0. If in addition all the 
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multipliers of system (1.6) are distributed inside the unit circle, the w-periodic solution ot system 

( 1.1) is R-asymptotically stable. 

Proof. Suppose x(t. 7, p), x(0, v, j_~) = v is a solution of Eq. (I. 1). and $(f J = x(r. qo. 0) IS ;II; 
w-periodic solution of system (1.3). For x(r, v, p) to be an o-periodic solution it IS necessary and 
sufficient that 

is solvable for 7. 

Without loss of generality one can assume that the point (qo, 0), together with a ncighbourhood. 
does not belong to any of the surfaces t = t,(x). From this and from the differentiability of the 
functions f, g, I, W, r, , T,. it follows by the theorem on the existence of B-derivatives of solutions nt 

impulsive systems with respect to intial data [S] that the Jacobian Dh (q, p) exists and is continuous 

in a neighbourhood of the point (7,)) 0). 

Suppose now that X(w) is the monodromy matrix of system (1.6). By definition, the variational 
system of equations Dh(q,. 0) = det(X(w) - E). and consequently, by virtue of the assumption on 
the multipliers, Dk(q,,, 0) #O. From this follows the existence of a unique o-periodic solution 

x(t, 7, p). Its G(r) limit in the B-topology follows from the theorem of the continuous dependence of 
solutions of impulsive systems on the initial data and parameters [7]. 

Suppose now that all multipliers of system (1.6) have a modulus smaller than one. By the 
assumptions of the theorem there exist U-derivatives of the solution x(r, q, p) with respect to the 

initial data v, (j = 1. 2, . YI) which form a normalized fundamental matrix of solutions 
corresponding to the x(t, 7, p) system of equations in variations. That fundamental matrix ot 

solutions at the point t = w is the monodromy matrix. Since B-derivatives depend continuousI\ r:n 

p, the corresponding multipliers will, for sufficiently small 1 p /, have a modulus smaller than one. 
Consequently, by the generalization of the Lyapunov-PoincarC theorem [5] the w-periodic solution 

of system (1. I) will be B-asymptotically stable. The theorem is proved. 

.A ALMOST Pt-iKIOI>IC’ SOI.I.!‘I’IONS 

Suppose that the conditions of Sec. 1 hold for ( I. 1). and moreover that the function g is Bohr a.p, 

with respect to t, while the sequences W, . T, are uniformly a.~. in the domain C. Suppose also that 

the parameter p, in addition to the previous smallness requirements. satisfies the inequality 

On the basis of these assumptions and the similarity to the proof of Lemma 5 in [6] one can verify 
that the sequence J, is a.p. uniformly with respect to x and /_L. Furthermore. by Lemma I.5 the 

functions Ji have continuous second-order derivatives with respect to the variables _Y,, j = 1, II and 
p.i Applying the Hadamard lemma, we find that the representation J, (x, p) = Q;(x) = pH, (x_ p) 
holds for each i, where Hi is a continuously differentiable function, Q, is a twice continuously 
differentiable function and H,, Qi are a.p. sequences. One can also verify that aQ,[+(0,)]/ax = P,. 
Thus, in some neighbourhood of the integral curve of the solution x = G(t) in G. ( I .7) can be written 

in the form 

dX 

-=f(t,x) +/lg(t.x,cl), ff0, 
dt 

axlr=ei=QtW +tiHt(xd. 
i.3.1) 

tSAMOILENK0 A. M.. PERESTYUK N. A. and AKHMETOV M. CJ.. Differential properties oi solutions and lntepr:~i 

surfaces of non-linear impulsive systems. Preprint No. 37. Institute of Mathematics, Kiev, 19W 
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Performing the replacement x = 1+5(t) + z in (3. l), we go over to the system 

dz 
-=A(r)z+\Ir(t.z)+C(g(t.~(r),o)+I.tF(~~z~~)~ r#ef 

df 

&_Bj=Pfz tSf(z) +ccF&tW,),O) +Pvt(z,P! 
(3.2) 

in which 

tP(t, z) =f (r, $(r) + z) - f (r, z) - A(r)2 

F(f,z P) =g(t, $4) +z,d -it@. W).O) 

St (2) =Qt (NW + z) - Qi (NW) - Ptz 

V,(z,d =h(Wf)+z.d -h(W’t),O) 

One can verify that the functions !P, F, S and V satisfy the inequalities 

ll\k(r,z)IIt IIS~(z)II<m llzl12 

lbP(t,z,) -\Ir(r,z,) I+ US,(z,) -sf(zx) llG 

a( liz~~+uz*u)uz~ -z*u 

llF@,z,.Et,) --F(t.z2.y2) If+ !JV~~Z~,B~I - 

-vf(z2.112) 1lGkfllZl -z2 U+lcr1 -M2i) 

for all i and z, where m and k are non-negative constants, and the function i(u)-+0 as u-+0. We 
consider the equation 

dz/dr =A(r)z tpg(r, $(r),O), r #of 

Azfi I t=ei =P,z + d.4 (He,), 0) (3.3) 

If one assumes that the multipliers of (1.6) do not lie on the unit circle, then [43 a Green’s function 
fi(r, s) for (3.3) exists, for which constants KS 1 and fy > 0 exist such that 

llQ(t,s) II<Kexp(-arlr-sl), -w<r, s<tm 

We will introduce the following notation 

L =s;p 118 0, $0). 0) If + s;p II Hf ($(e,), 0) W 

Ki,=Kmax (L, 
2 

a 1 --e-w ) 

Because g[r, +(r), 0] is an a.p. function, and Hi[+(&), 0] is an a.p. sequence, the function 

is the unique a.p. solution of Eq. (3.3) and satisfies the inequality ~~~(r)~~ d 1 p, / iu, L [4]. 
The following theorem holds. 

Theorem 2. If system (1.1) satisfies the above conditions, then for sufficiently small ) p] it has a 
unique a.p. solution c(r) which tends in the B-topology to the w-periodic solution x = $(r) of the 
generating equation (1.3) as ~-9 0. 

Proof. We fix the positive N and construct the set II of all discontinuous a.p. functions q(t) that 
have discontinuities at points of the sequence 0, and satisfy the inequality j/p(r) - p@(r) 11~ f p 1 N for 
rER. We define in this space the norm 
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II 9 II* =sup II 9 (t) II 
r 

Suppose that the operator Q> acts in I1 

@(9 It)) = 90 (t) + 

+ s” Q(t.~)[‘J%9(u)) +~F(u,cp(u), cl)b+ 
-Ca 

We will verify that for sufficiently small / p 1 the reiation @p(9) E II holds for each 9~ 11. Firstly, UC 
have 

IIcP(9(r)) -,-90(t) II< Im Ke-Q’r-u’ [/.lZM(N+KoL)2 + 
-0C 

+ p2k(N+ Ko + 1))dut z Ke-Qtt-ef ’ [/_A?+v+ K,L)2 + 
*= - m 

+ p’k(N+ Ki, + l)] 9~~ K. [m(N+ K&j2 + (N+ K. + l)] 

and hence, if we assume that the condition 

Ifi/ <N[K,(m(NtKoL,)” t(NtKotl))]-’ 

holds, the inequality ~~~(cp(t)) - 9,) (t) I/ s i p j N is satisfied. 
Then from the almost periodicity of the functions zlr(t, q(t)). F(r, q(t). pL) and sequences 

S;(cp(&)), V,(q(&), p), and using Lemma 24.4 of [4], we find that the function Q(cp(t)) is almost 
periodic. Suppose now that 9, . cp2 E II. For these functions we have 

+ ; =- Ke- “r-6~t [1(2lr*lN) 119, -92 II0 f 

+ tcltk 119, - 92 II’,] 4 KoU(2l~lN)+1~l~) 119, -92 110 

From this, with the condition &(1(2 1 p / N) $ j p 1 k) < I, it follows that 4, is a contraction operator 
in II. Thus, if 1 y / is sufficiently small, the sequence of a.p. functions (Pk , where cp,, is the solution of 
(3.3) and qok+l = @(pk) for k = 0. 1, 2. . . converges to the a.p. function v(t) which is the solution 
of the equation z = a(z). 

Differentiating the expression v = Q(v) at points rf Hi and checking that the discontinuity 
conditions are satisfied, we verify that v is the solution of system (3.2). Then the function 
7 = t&(r) +v(t) is the a.p. solution of Eq. (3.1) and simultaneously of system (1.7). It satisfies the 
inequality 

IIq(t) --lit(t) IlGlcli (KoL +N) (.1.3) 

Ry property A we find that for sufficiently small 1 p / system (1.1) has an a.p. solution j(f ). 
We will now prove the uniqueness of the a.p. solution c(t). Again using property A and the 

replacement x = glr(t) + z we find that the proof reduces to the verification of the uniqueness of the 
a.p. solution of system (3.2). We will assume the opposite, namely, that $i and CCI:! are different a.p. 
solutions of (3.2). From the properties of the Green’s function fi(t, s) it follows that for i = 1, 2 we 
have the equality 
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From this there follows the relation 

But this equality is only possible provided (]$r - &/la = 0, i.e. (Crr(t) = &(t). 
Finally, from inequality (3.4) and the continuous dependence of the solutions of system (1.1) on 

the initial data and the parameter, there follows the convergence t;(t)+ $(t) in the B-topology as 

/J-+0. 
The theorem is proved. 

4. EXAMPLE 

Consider a dynamical system consisting of a bead bouncing on a platform. Such a system has been previously 
investigated in [8]. We assume that the platform does not react to collisions with the bead and moves according 
to the law X = Xosin of. The motion of the bead between collisions is given by the formula 

x=-g(t - 9)2/2+x0’ (f - $7) +x0 

where x0 and .x0* are the values of the coordinate and velocity of the bead at the instant t = 9 immediately after 
collision. 

The dynamical system under investigation with the condition 

W 1-R 
war+----- 

X0 l+R 
(4.1) 

admits of a motion x = #cl(t) with period T = 27r/w, which at the instant t = cp given by the relation 

fig 1-R 
~q=---..-- - 

XoW2 1+It 

(R being the coefficient of restitution) has the initial value 

x, =x9 JC-Zq. x; =nglw 

If we write x = xi, and dxldt = xzarcsin (xl/Xo)o = to(nl), then for the dynamical system under considera- 
tion one can construct a suitable mathematical model in the form of the following non-linear system of 
differential equations with impulsive actions 

dx,/dt=x,,dx,/dt=-g,t +to(x,) 

us Ir=lo(x,)= (1 +R)[X,wcos(arcrh~~ -x21 
X0 

(4.2) 

Because of the T-periodicity, the model is constructed only for the interval [0, T]. In order to consider the 
entire range + 00 < t< + Q, it is sufficient to replace the surface t = to (xi ) by the surfaces t = tj = to (xi ) + 2+/w in 
system (4.2). 

It is obvious that (4.2) is a highly idealized model. It takes no account of drag in the medium, the unavoidable 
perturbations of the platform, and possible elastic couplings. Hence it is natural to consider a system of the 
form 

dx, /dt =x, 

~/dt=-s+rf(t,XC1).t#:tf(~ +PT~(XP) 
x1 (4.3) 

Ax, I t=t&x) + ~T~x,H), = (1 + 4 [ X0 wc&arcoin - x 1 -Xal+rZfGx,r) 
0 

in which x = (xi, x2) and p is a small parameter. 
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We shall assume that in (4.3) the functions f. I and T have continuous second-order partial derivatives with 
respect tax, ,x2 and CL. and that the functionfis continuously differentiable with respect to t. System (4.2) is the 
generator of Eqs (4.3). Hence we begin the investigation with the former. The system of equations in variations 
about the solution x = $(r) has the form 

du, jdr =y , du, jdr =O. t + p 

Au, I rag= - (1 + wu, 
(1 +R)’ 

4lf=q- #I -b(I -R)‘)jll, - (l+R)4 
x 

b= J coc2p - 1 
t 

The characteristic equation for (4.4) is 

p” + (nb(1 -R’) - (1 +R’))p+R’ =O 

We find from this equation that (4.4) does not have a unique multiplier provided 

V? 1-R 
R=l or w’+------ 

X0 l+R 
(4.5) 

A necessary and sufficient condition for the multipliers to be situated inside the unit sphere is the inequality 

Relation (4.6) is identical to the condition obtained in [S] by the matching method. 
We change to system (4.3). Assuming that R # 1, we consider two cases. 
1. Suppose a function f with period 7’ with respect to t and uniform with respect to x, I*. i = 0, -+ I. 

satisfies the equalities I,,, = Z,, T,+, = TV. Then from relations (4.1), (4.5) and (4.6), we find according to 
Theorem 1 that if inequality (4.4) holds, system (4.3) admits of a unique ~-asymptotically stable solution with 
period T for suf~c~ently small p, which when ,u -1) tends in the B-topology to the solution x = tir(f) of system 
(4.2). 

2. Suppose the function f is a.p. with respect to r in the Bohr sense and the sequences Ii and 7; are a.~. 
uniformly with respect to x and w. One can verify that if condition (4.5) is satisfied, the multipliers of Eqs (3.3) 
do not lie on the unit circle. Consequently, on the basis of Theorem 2, we conclude that when the inequality 

wg I-R 
W2>------- 

X0 l+R 

is satisfied, system (4.3) has a unique a.p. solution which tends in the B-topology to the solution x = d(E) of Eqs 
(4.2) as p---+0. 
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